Thursday, February 25, 2010

ELECTROSTATIC RESEARCH - DISADVANTAGES


Disadvantages include a lack of bass response (due to phase cancellation from a lack of enclosure (bass rolloff 3db point occurs when the narrowest panel dimension equals a quarter wavelength of the radiated frequency for dipole radiators, so for a Quad ESL 63 at 0.66 meters wide this occurs at around 129Hz so is comparable to many box speakers. speed of sound taken as 343 m/s) and the difficult physical challenge of reproducing low frequencies with a vibrating taut film with little excursion amplitude, however as most diaphragms have a very large surface area compared to cone drivers only small amplitude excursions are required to put relatively large amounts of energy out), and sensitivity to ambient humidity levels. While bass is lacking quantitatively (due to lower distortion than cone drivers) it can be of better quality ('tighter' and without 'booming') than that of electrodynamic (cone) systems. Phase cancellation can be somewhat compensated for by electronic equalization (a so-called shelving circuit that boosts the region inside the audio band where the generated sound pressure drops because of phase cancellation). Nevertheless maximum bass levels cannot be augmented because they are ultimately limited by the membrane's maximum permissible excursion before it comes too close to the high-voltage stators, which may produce electrical arcing and burn holes through it. Recent, technically more advanced solutions for perceived lack of bass include the use of large, curved panels (Sound Lab, MartinLogan CLS), electrostatic subwoofer panels (Audiostatic, Quad) and long-throw electrostatic element allowing large diaphragm excursions (Audiostatic). Another trick often practised is to step up the bass (20–80 Hz) with a higher transformation ratio than the mid and treble.

This relative lack of loud bass is often remedied with a hybrid design using a dynamic loudspeaker, e.g. a subwoofer, to handle lower frequencies with the electrostatic diaphragm handling middle and high frequencies. Many feel that the best low frequency unit for hybrids are cone drivers mounted on open baffles as dipoles transmission line woofers or horns, since they possess roughly the same qualities (at least in the bass) as electrostatic speakers, i.e. good transient response, little box coloration, and (ideally) flat frequency response. However, there is often a problem with integrating such a woofer with the electrostatics. This is because most electrostatics are line sources, the sound pressure level of which decreases by 3 dB for each doubling of distance. A cone speaker's sound pressure level, on the other hand, decreases by 6 dB for each doubling of distance because it behaves as a point source. This can be overcome by the theoretically more elegant solution of using conventional cone woofer(s) in an open baffle, or a push-pull arrangement, which produces a bipolar radiation pattern similar to that of the electrostatic membrane. This is still subject to phase cancellation, but cone woofers can be driven to far higher levels due to their longer excursion, thus making equalization to a flat response easier and they add distortion thereby increasing the area (and therefore the power) under the frequency response graph, making the total low frequency energy higher but the fidelity to the signal lower.

The directionality of electrostatics can also be a disadvantage in that it means the 'sweet spot' where proper stereo imaging can be heard is relatively small, limiting the number of people who can fully enjoy the advantages of the speakers simultaneously.

Because of their tendency to attract dust, insects, conductive particles and moisture, electrostatic speaker diaphragms will gradually deteriorate and need periodic replacement. They also need protection measures to physically isolate their high voltage parts from accidental contact with humans and pets. Cost-effective repair and restoration service is available for virtually every current and discontinued electrostatic loudspeaker model.

No comments:

Post a Comment